繁体字转换器繁体字网旗下考试题库之数学试题栏目欢迎您!
1、试题题目:已知圆C以C(t,2t)(t∈R,t≠0)为圆心且经过原点O.(Ⅰ)若直线2x+y-4..

发布人:繁体字网(www.fantiz5.com) 发布时间:2016-01-03 07:30:00

试题原文

已知圆C以C(t,
2
t
)(t∈R,t≠0)
为圆心且经过原点O.
(Ⅰ)若直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(Ⅱ)在(Ⅰ)的条件下,已知点B的坐标为(0,2),设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

  试题来源:不详   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:圆的标准方程与一般方程



2、试题答案:该试题的参考答案和解析内容如下:
由题知,圆C方程为(x-t)2+(y-
2
t
)2=t2+
4
t2

化简得x2-2tx+y2-
4
t
y=0

(Ⅰ)∵|OM|=|ON|,则原点O在MN的中垂线上,
设MN的中点为H,则CH⊥MN.
∴C,H,O三点共线,
则直线OC的斜率k=
2
t
t
=
2
t2
=
1
2
?t=2
或t=-2,
知圆心C(2,1)或C(-2,-1),
所以圆方程为(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5,
由于当圆方程为(x+2)2+(y+1)2=5时,
直线2x+y-4=0到圆心的距离d>r,不满足直线和圆相交,故舍去.
∴圆C方程为(x-2)2+(y-1)2=5.   
(Ⅱ) 点B(0,2)关于直线x+y+2=0的对称点为B′(-4,-2),
则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,
又B′到圆上点Q的最短距离为|B/C|-r=
(-6)2+32
-
5
=3
5
-
5
=2
5

所以|PB|+|PQ|的最小值为2
5

直线B′C的方程为y=
1
2
x

则直线B′C与直线x+y+2=0的交点P的坐标为(-
4
3
,-
2
3
)
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“已知圆C以C(t,2t)(t∈R,t≠0)为圆心且经过原点O.(Ⅰ)若直线2x+y-4..”的主要目的是检查您对于考点“高中圆的标准方程与一般方程”相关知识的理解。有关该知识点的概要说明可查看:“高中圆的标准方程与一般方程”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2016-01-03更新的数学试题 网站地图 | 繁体字网 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.fantiz5.com All Rights Reserved.
联系我们: