繁体字转换器繁体字网旗下考试题库之数学试题栏目欢迎您!
1、试题题目:已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4.(1)若以原点..

发布人:繁体字网(www.fantiz5.com) 发布时间:2016-01-05 07:30:00

试题原文

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长为4.
(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆焦点坐标;
(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,记直线PM,PN的斜率分别为kPM,kPN,当kPM?kPN=-
1
4
时,求椭圆的方程.

  试题来源:济南一模   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:圆锥曲线综合



2、试题答案:该试题的参考答案和解析内容如下:
(1)由b=
2
1+1
得b=
2
…(2分)
又因为2a=4,
所以a=2,又a2=4,b2=2…(4分)
所以c2=a2-b2=2,
两个焦点坐标为(
2
,0),(-
2
,0)
…(6分)
(2)由于过原点的直线L与椭圆相交的两点M,N交于坐标原点对称
不妨设:M(x0,y0),N(-x0,-y0),P(x,y)
因为M,N,P在椭圆上,
所以它们满足椭圆方程,即有
x20
a2
+
y20
b2
=1,
x2
a2
+
y2
b2
=1

两式相减得:
y2-
y20
x2-
x20
=-
b2
a2
.…(8分)
由题意它们的斜率存在,则kPM=
y-y0
x-x0
kPN=
y+y0
x+x0
…(10分)
kPM?kPN=
y-y0
x-x0
?
y+y0
x+x0
=
y2-
y20
x2-
x20
=-
b2
a2
则-
b2
a2
=-
1
4
,由a=2得b=1

故所求椭圆的方程为
x2
4
+y2=1
…(12分)
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4.(1)若以原点..”的主要目的是检查您对于考点“高中圆锥曲线综合”相关知识的理解。有关该知识点的概要说明可查看:“高中圆锥曲线综合”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2016-01-05更新的数学试题 网站地图 | 繁体字网 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.fantiz5.com All Rights Reserved.
联系我们: