繁体字转换器繁体字网旗下考试题库之数学试题栏目欢迎您!
1、试题题目:已知a1=1数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0(1)求an(2)令bn..

发布人:繁体字网(www.fantiz5.com) 发布时间:2016-03-07 07:30:00

试题原文

已知a1=1数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0
(1)求an
( 2 )bn=
1
an
,求{bn}的前n项和Tn

  试题来源:不详   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:等差数列的通项公式



2、试题答案:该试题的参考答案和解析内容如下:
(1)∵nSn+1-(n+3)Sn=0,即nan+1=3Sn
∴(n-1)an=3Sn-1(n≥2)②
①-②得nan+1=(n+2)an(n≥2)
∴an=
n+1
n-1
×
n
n-2
×
n-1
n-3
×…×
6
4
×
5
3
×
4
2
×
3
1

=
n(n+1)
2
(n≥2),
a1=1也适合上式,
∴an=
n(n+1)
2
(n∈N*).
(2)bn=
1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
),
∴Tn=2(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=
2n
n+1
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“已知a1=1数列{an}的前n项和Sn满足nSn+1-(n+3)Sn=0(1)求an(2)令bn..”的主要目的是检查您对于考点“高中等差数列的通项公式”相关知识的理解。有关该知识点的概要说明可查看:“高中等差数列的通项公式”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2016-03-07更新的数学试题 网站地图 | 繁体字网 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.fantiz5.com All Rights Reserved.
联系我们: