繁体字转换器繁体字网旗下考试题库之数学试题栏目欢迎您!
1、试题题目:在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0..

发布人:繁体字网(www.fantiz5.com) 发布时间:2016-02-10 07:30:00

试题原文

在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(1)求角B的值;
(2)已知函数f(x)=2cos(2x-B),将f(x)的图象向左平移
π
12
后得到函数g(x)的图象,求g(x)的单调增区间.

  试题来源:太原模拟   试题题型:解答题   试题难度:中档   适用学段:高中   考察重点:正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)



2、试题答案:该试题的参考答案和解析内容如下:
(1)由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,故 2sinAcosB+sin(B+C)=0,
因为 A+B+C=π,所以 2sinA cosB+sinA=0.∵sinA≠0,∴cosB=-
1
2

又 B 为三角形的内角,所以 B=
3

(2)∵B=
3
,∴函数f(x)=2cos(2x-
3
),
由题意得:函数g(x)=2cos[2(x+
π
12
)-
3
]=2cos(2x-
π
2
 )=2sin2x,
由  2kπ-
π
2
≤2x≤2kπ+
π
2
,k∈z,得 kπ-
π
4
≤x≤kπ+
π
4

故f(x)的单调增区间为:[kπ-
π
4
,kπ+
π
4
],k∈z.
3、扩展分析:该试题重点查考的考点详细输入如下:

    经过对同学们试题原文答题和答案批改分析后,可以看出该题目“在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0..”的主要目的是检查您对于考点“高中正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)”相关知识的理解。有关该知识点的概要说明可查看:“高中正弦、余弦函数的图象与性质(定义域、值域、单调性、奇偶性等)”。


4、其他试题:看看身边同学们查询过的数学试题:

数学试题大全 2016-02-10更新的数学试题 网站地图 | 繁体字网 -- 为探究古典文化架桥,为弘扬中华文明助力!
版权所有: CopyRight © 2010-2014 www.fantiz5.com All Rights Reserved.
联系我们: